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Edge magnetic field in thexxz spin-1
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Abstract. The critical behaviour associated with a transverse magnetic field applied at the edge
of a semi-infinitexxz S = 1

2 chain is calculated using field theory techniques. Contrary to a
recent claim, we find that the long-time behaviour is given by a renormalization group fixed point
corresponding to an infinite field which polarizes the spin at the edge. The zero-temperature
entropy and position-dependent magnetization are calculated.

There has recently been considerable interest in boundary critical behaviour associated
with various quantum impurity problems. In particular, it was shown by Kane and
Fisher [1] that even a weak scattering potential in a repulsive Luttinger liquid effectively
renormalizes to infinity at low energies so that the transmission coefficient vanishes.
Independently, the essentially equivalent problem of a single impurity in anS = 1

2
Heisenberg chain, which is equivalent to the spinless Luttinger liquid, was studied [2].
It was concluded that an arbitrarily small weakening of a single exchange coupling causes
this coupling to renormalize to zero giving a fixed point corresponding to a broken chain.
In the bosonization approach, the infrared fixed point corresponds to a Dirichlet boundary
condition,φ(0) = constant, on the boson field. It is generally believed that only in the case
of a spinful Luttinger liquid, where two boson fields must be introduced, does a non-trivial
fixed point occur.

A problem which is closely related to these examples involves a transverse magnetic
field, h, applied at the end of a semi-infinite chain with a free boundary condition:

H = J
∞∑
i=0

[Sxi S
x
i+1+ Syi Syi+1+ γ Szi Szi+1] − hSx0 . (1)

The integrability of this model was shown in [3]. The continuum limit of this model,
given later, can be written in terms of a boundary sine–Gordon field theory and describes
a particle in a periodic potential coupled to a dissipative environment [4]. In the case
γ = 0, the connection of the dissipation model with the spin-chain problem was exploited
in [5], leading to a mapping into a free electron problem and thus an explicit solution in the
continuum limit. The integrability of the boundary sine–Gordon model was shown in [6].
Further work has appeared on the continuum limit bosonized form [7, 8]. The connection of
this boundary sine–Gordon model with the problem of an impurity in an infinite Luttinger
liquid was pointed out in [1, 9]. The integrability of the boundary sine–Gordon model was
used to obtain exact results on the impurity in the infinite Luttinger liquid in [10]. It was
recently claimed [11] that both theh = 0 andh = ∞ fixed points in the spin chain model
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are unstable and, instead, the system renormalizes to some sort of non-trivial intermediate
h fixed point analogous to the behaviour in the overscreened Kondo problem. If true, this
would have important consequences for both the Luttinger liquid and quantum dissipation
problems.

The purpose of this paper is to solve for the critical properties of this spin-chain problem
by an extension of the methods used in [2]. We conclude that the infinite field fixed point
is stable along the entirexxz critical line −1 < γ < 1. This fixed point corresponds to a
boundary conditionSx0 = constant. In bosonization language this corresponds to a Neumann
boundary condition, dφ/dx(0) = 0. At the isotropic point,γ = 1, the edge field is exactly
marginal and a line of fixed points occurs. Our conclusion is consistent with the earlier
calculations of Guineaet al [4, 5] but disagrees with the recent results of [11]. We argue
that the different conclusion reached in [11] was due to a misinterpretation of the precise
meaning of the infinite field fixed point. As further applications of the Neumann boundary
condition, we calculate the zero-temperature impurity entropy and〈Sxj 〉, showing that the
latter exhibits universal oscillations which decay into the chain with a power law.

The standard bosonization technique (see, for example, [12]) allows us to represent the
spin operators in terms of a boson field,φ with Lagrangian density:

L = (1/2)[(∂tφ)2− (∂xφ)2]. (2)

(We set the spin-wave velocity to 1.) The long time and distance behaviour of the spin
operators corresponds to separate uniform and staggered components:

Szj ≈ (1/2πR)∂φ/∂x + A(−1)j sinφ/R

S−j ≈ ei2πRφ̃ [B cosφ/R + C(−1)j ]. (3)

Here φ̃ is the dual field, defined by splittingφ up into left and right moving terms:

φ(t, x) = φL(t + x)+ φR(t − x) φ̃(t, x) = φL(t + x)− φR(t − x). (4)

φ is regarded as an angular variable on a circle of radiusR given in terms of the exchange
anisotropy parameter,γ , by

R =
√
(1/2π)− (1/2π2) cos−1 γ . (5)

Along thexxz critical line

0< R < 1/
√

2π. (6)

Only the first amplitude in equation (3) is a universal function ofR. The other constants
A, B, C are non-universal. With an appropriate choice of ultraviolet regularization scheme
(and the lattice spacing and spin-wave velocity set to 1),

〈Sxi Sxj 〉 →
C2(−1)i−j

2|i − j |2πR2 . (7)

Thus the (γ -dependent) constant,C, can be determined from a numerical calculation of
this correlation function. An exact result for the amplitude of the correlation function was
conjectured recently [13]:

C(γ ) = (1+ ξ)
2

[
0(

ξ

2)

2
√
π0

(
1
2 + ξ

2

)]η/2
× exp

{
−(1/2)

∫ ∞
0

dt

t

(
sinh(ηt)

sinh(t) cosh[(1− η)t ] − ηe−2t

)}
(8)
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whereη ≡ 2πR2 andξ ≡ η/(1− η). This function is plotted in figure 1. (It goes to 0.5 at
γ → −1 and diverges as(1− γ )−1/8 asγ → 1.) As we shall see later, the same constant
C will appear in〈Sxj 〉 in the presence of a boundary field.

It was shown in [2] that free boundary conditions on the spins atx = 0 correspond to
a Dirichlet boundary condition on the boson field,

φ(0) = 0. (9)

(The value of the constant follows from requiring that〈Szj 〉 = 0.) To calculate the Green
functions or RG flows at this fixed point we regard this boundary condition as relatingφL

andφR:

φR(t, 0) = −φL(t, 0). (10)

In fact, this boundary condition allows us to regardφR(x) as the analytic continuation of
φL(x) to the negativex axis:

φR(t, x) = −φL(t,−x). (11)

This allows a straightforward evaluation of the Green functions [2].
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Figure 1.

Now we consider the effect of the edge magnetic field. The staggered component ofSx0
gives an extra boundary term in the free boson Hamiltonian:

HB = −constant· h cos 2πRφ̃(0). (12)

Using the fact that we have a free boundary condition, we may equivalently write this as

HB = −constant· h cos[4πRφL(0)]. (13)

This has a scaling dimension:

d = 2πR2. (14)

Sinced < 1 along the entirexxz critical line this is a relevant boundary interaction. At
the antiferromagnetic Heisenberg pointγ = 1, it is marginal. We return to this special case
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later. The simplest possibility to assume is thath renormalizes to∞ in the infrared. From
equation (12) this implies a Neumann boundary condition

φ̃(0) = φL(0)− φR(0) = 0 (15)

and hence∂φ/∂x = ∂φ̃/∂t = 0. What this assumption means in practical terms is that the
Green functions involving spatial locations far from the chain end compared to a crossover
length scaleξ (given later) and long time intervals compared to 1/ξ will be given by the
free boson model with the Neumann boundary condition. To check the consistency of this
assumption, we should calculate the scaling dimension of all operators allowed by symmetry
which could be added to the effective Hamiltonian. Our assumption is consistent if these
are all irrelevant,d > 1. Imposing the boundary condition, we may write the spin operator
at the origin as

Sx0 ≈ C + B · cos(2φL/R). (16)

The operator cos(2φL/R) is certainly allowed by symmetry in the effective Hamiltonian,
since it occurs inSx0 . It has scaling dimension

d = 1/2πR2 > 1 (17)

and is therefore irrelevant. This is a natural result given the interpretation of the Neumann
boundary condition as corresponding to infinite field. Applying an additional field at any
sites near the chain edge should not destabilize the fixed point.

The marginal operator∂φ̃/∂x is forbidden by the symmetry of rotation byπ around
thex-axis, which is still a good symmetry in the presence of the magnetic field. This takes
φ̃ → −φ̃. Thus only irrelevant operators,(∂φ̃/∂x)2, cos 2nφL/R (for n = 1, 2, 3, . . .) are
allowed. Hence, the infinite field fixed point is stable. It is thus very natural to assume
that even a very small field will renormalize to infinity so that the Neumann boundary
condition describes the long-time behaviour. Indeed it is difficult to imagine what a non-
trivial fixed point (neither Dirichlet nor Neumann) would look like. In fact, it can be proven
that Dirichlet and Neumann boundary conditions are the only conformally invariant ones
in a theory containing a single periodic boson, for genericR [14]. Hence, there can be
no other fixed points if we assume that they correspond to conformally invariant boundary
conditions.

Note that if we had ignored the Neumann boundary condition and considered the bulk
operator cos(φ/R) we would have obtained the dimension 1/4πR2, which is precisely half
of the correct value. This obeysd < 1 along thexxz critical line for γ > 0 which would
imply that the operator was relevant and the infinite field fixed point was unstable. The
infinite field limit does notgive a problem equivalent to the initial one because the boundary
conditions have changed from Dirichlet to Neumann. The result is that a magnetic field
(in the x-direction) becomes irrelevant with Neumann boundary conditions while it was
relevant with Dirichlet boundary conditions. It is instructive to contrast the RG behaviour
of the present problem with a spin chain version of the two-channel Kondo problem of the
type treated in [2] where we consider the Heisenberg model (γ = 1) on the infinite line with
a coupling,JK between sites 0 and±1, which is different than the bulk coupling,J . In that
case theJK = ∞ fixed point really is equivalent to theJK = 0 fixed point because the three
strongly coupled spins form an effectiveS = 1

2 spin atJK = ∞ and the neighbouring spins
on sites±2 obey free boundary conditions with no coupling to the effective spin in that
limit. This follows because the exchange coupling between sites 1 and 2 (and also between
sites−1 and−2) maps the low-energy states of the strongly coupled three-spin complex
into high-energy states, so, using second-order degenerate perturbation theory, the effective
coupling to sites±2 is of the order ofJ 2/JK → 0. By contrast, in the magnetic field case
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theh = ∞ limit effectively eliminates the spinS0 but the effective field acting onS1 does
not go to zero, but rather to a finite value,−J/2. Thus this situation is not equivalent to
h→ 0, contrary to the statement in [11]. Instead, we must regard the infinite field limit as
a different fixed point corresponding to a Neumann boundary condition in the field theory.

The ‘groundstate degeneracy’ (exponential of the zero-temperature entropy) for Dirichlet
and Neumann fixed points is [15]

gD = 1/
√

2
√
πR gN =

√√
πR. (18)

We see thatgN < gD for all R < 1/
√

2π , that is along the entirexxz critical line. Thus our
assumption of renormalization from Dirichlet to Neumann fixed points is consistent with
the g-theorem [16].

Next, as another application of the Neumann boundary condition, we calculate the long-
distance behaviour of〈Sxj 〉. Other Green functions can be calculated in the same way. We
use our bulk bosonization formulae, equation (3) and use the Neumann boundary condition
to regardφR as the analytic continuation ofφL:

φR(x) = φL(−x). (19)

Hence,

Sxj ≈ cos 2πR[φL(x)− φL(−x)] · {B cos{[φL(x)+ φL(−x)]/R} + C(−1)j }. (20)

Thus

〈Sxj 〉 → C(−1)j 〈ei2πRφL(x) e−i2πRφL(−x)〉 = C(−1)j

(2j)πR2 . (21)

This formula is only valid outside a crossover length which can be estimated from the
renormalization group, in the case of a weak field, as

ξ ∝ (J/h)1−2πR2
. (22)

The amplitudeC is determined in the bulk theory (for example, from the behaviour of the
correlation function in the infinite system, equation (7)) and is independent of the strength
of the edge field,h. This reflects the fact that the system flows to a universal fixed point
regardless of the size ofh.

Finally, we consider the isotropic Heisenberg antiferromagnet,γ = 1, R = 1/
√

2π . In
this case the direction of the applied field is immaterial so we choose thez-direction. This
case turns out to be very similar to the case of arbitraryγ between−1 and+1 with the
field in thez-direction, so we consider that more general situation. The magnetic field gives
the term in the bosonized Hamiltonian (using the Dirichlet boundary condition):

HB = −hα · ∂φL/∂x(0) (23)

whereα is a non-universal constant of O(1). Actually, this form of the prefactor is only
valid at smallh. For largerh it must be replaced by some non-universal function ofh.
Adding this to the free boson Hamiltonian leaves a free boson theory which can be solved
exactly. This perturbation is exactly marginal, leading to a line of fixed points. Using the
Dirichlet boundary condition to eliminate the right movers, the full Hamiltonian can be
written

H =
∫ ∞
−∞
(dφL/dx)

2− hα dφL/dx(0). (24)

This boundary term can be adsorbed into a discontinuity of the fieldφL at the origin,

φ′L ≡ φL − hαθ(x)/2 (25)
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whereθ is the step function. Applying this shift to the Dirichlet boundary condition we can
write

〈Szj 〉 → B(−1)j 〈sin(φ′L(x)− φ′L(−x)+ hα/2)/R〉. (26)

For smallh this gives

〈SzJ 〉 ∝
h(−1)j

|j |1/4πR2 . (27)

The exponent equals 1/2 at the isotropic point, 2πR2 = 1, in agreement with the previous
calculation, equation (21). Note that in this case the prefactor varies withh, corresponding
to a line of fixed points. The boundary states at the isotropic point have been discussed
in [7]. In particular, it was shown that the line of fixed points terminates at the Neumann
fixed point, corresponding to infinite field.
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